Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Brønsted Acid Sites.

نویسندگان

  • Ning Zhang
  • Xiyu Li
  • Yifei Liu
  • Ran Long
  • Mengqiao Li
  • Shuangming Chen
  • Zeming Qi
  • Chengming Wang
  • Li Song
  • Jun Jiang
  • Yujie Xiong
چکیده

Adsorption and activation of molecules on a surface holds the key to heterogeneous catalysis toward aerobic oxidative reactions. To achieve high catalytic activities, a catalyst surface should be rationally tailored to interact with both organic substrates and oxygen molecules. Here, a facile bottom-up approach to defective tungsten oxide hydrate (WO3 ·H2 O) nanosheets that contain both surface defects and lattice water is reported. The defective WO3 ·H2 O nanosheets exhibit excellent catalytic activity for aerobic coupling of amines to imines. The investigation indicates that the oxygen vacancies derived from surface defects supply coordinatively unsaturated sites to adsorb and activate oxygen molecules, producing superoxide radicals. More importantly, the Brønsted acid sites from lattice water can contribute to enhancing the adsorption and activation of alkaline amine molecules. The synergistic effect of oxygen vacancies and Brønsted acid sites eventually boosts the catalytic activity, which achieves a kinetic rate constant of 0.455 h-1 and a turnover frequency of 0.85 h-1 at 2 h, with the activation energy reduced to ≈35 kJ mol-1 . This work provides a different angle for metal oxide catalyst design by maneuvering subtle structural features, and highlights the importance of synergistic effects to heterogeneous catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary steps of the catalytic NO(x) reduction with NH3: cluster studies on reaction paths and energetics at vanadium oxide substrate.

We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V2O5(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of ad...

متن کامل

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Carbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation

Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Nature of WOx Sites on SiO2 and Their Molecular Structure− Reactivity/Selectivity Relationships for Propylene Metathesis

Supported WOx/SiO2 catalysts were investigated for propylene metathesis as a function of tungsten oxide loading and temperature. The catalysts were synthesized by incipient-wetness impregnation of an aqueous ammonium metatungstate solution onto the silica support and calcined at elevated temperatures to form the supported tungsten oxide phase. In situ Raman spectroscopy under dehydrated conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 13 31  شماره 

صفحات  -

تاریخ انتشار 2017